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In this chapter, we will identify three broad architectural strategies that
the mammalian brains use to solve tough problems. We’ll then see how we
can apply them to the challenge of text analytics.

2.1 Three Key Brain Architecture Principles

In the previous chapter, we identified three major neurological archi-
tectural principles that can give us useful insights and guidance:

• Representation levels - processing occurs in distinct steps, each one
contributing to a new representation level for the resulting data/ knowl-
edge/information,

• Topographic maps - useful for identifying data similarities and dif-
ferences, and are also essential in sensor/data fusion, and

• Statistical thermodynamics - modeling coordinated behaviors ob-
served in large-scale collections of simple processing units.

This chapter provides a bit more insight into how each of these guiding
principles has been useful for brain processing, how researchers have adapted
it for use in a related computational problem (typically vision), and how it
applies to text analytics.

Our understanding of how to apply insights from brain-based processing
will help us determine how to get greatest value from our effort in building
a text analytics system.

2.2 Computer Vision: A Corollary Story

One of the biggest breakthroughs in computer vision came about as re-
searchers discovered that effective computer vision needed to be framed in
terms of representation levels. The lowest computer vision processing levels
were devoted to statistically-based algorithms addressing very small portions
of the pixelated computer image. These algorithms found local edges (differ-
ences in pixel intensity), determined textures, and found gradients.

At the next processing level, small edge pieces were joined – and missing
edges were filled in – so that object boundary edges could be found. Op-
erating in a parallel endeavor, other algorithms characterized regions; size,
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shape, compactness, texture, intensity and other factors describing small re-
gions. Together, these edge-detection and region-characterization algorithms
yielded local image features.

Some three decades ago, computer vision research was temporarily stalled
at this level. Researchers were trying to identify objects using algorithms
that, more-or-less, could provide local features but not much more. They
were attempting to combine the resulting feature lists with object descrip-
tions that resulted from projecting how 3-D object models would appear
when viewed in a 2-D image. This turned out to be enormously difficult.

The reason was that the stretch between low-level features and high-level
object descriptions was too far for image interpretation algorithms to handle.

The breakthrough came about as various researchers identified the need
for an intermediate representation level.

This was a big step, because the researchers – up until this time – had
come from one of two major camps. On the one hand, there were specialists
in low-level image processing algorithms; everything that could contribute to
edge detection and region characterization. The efforts of these researchers
were augmented with corollary findings by brain researchers who specialized
in the low-level processes of the visual cortex. In fact, several major algo-
rithmic breakthroughs happened when image processing specialists adopted
ideas directly from cortical architectures.

On the other hand, the specialists in 3-D object modeling were very akin
to cognitive scientists. These researchers worked typically with symbolic
logic, and often attempted to emulate the thought processes (as they were
understood) as might be done in the mammalian brain. These researchers
modeled objects and relations between them, such as “the red cylinder is on
top of the blue block.”

What was missing was a connection between the low-level signal process-
ing algorithms and the high-level symbolic-based object representations.

Within the computer vision community, the breakthroughs combined two
major aspects. First, a group of researchers identified certain “missing” rep-
resentation levels; ones that were between the levels representing the edges
and regions in a 2-D image and the levels representing abstract understand-
ings of 3-D objects and how they would appear as projected into a 2-D plane.

Second, a related group identified a set of perceptual processes that oc-
curred in biological vision; ones that were intermediate between low-level
image processing and high-level symbolic manipulation. These processes,
which hearkened back to the early days of Gestalt psychology, also drew
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from insights into pattern recognition as it occurred in biological systems,
and as it could be encoded into algorithms.

This was a key step in allowing computer vision breakthroughs to happen.
Of course, many other steps were needed as well. The particular insights

about representation levels occurred in the mid-1980’s, and we are just now
having trustworthy autonomous vehicles with fully-functioning computer vi-
sion. Clearly, a lot of additional development has been necessary.

Nevertheless, this key insight has shaped computer vision, and is highly
relevant to other complex processing challenges – including text analytics.

2.3 Multiple Processing Stages and Multiple

Representation Levels

Just as computer vision requires multiple processing levels, so does text an-
alytics.

To accomplish effective text analytics, we need to do the low-level sta-
tistical processing algorithms. One of the features that differentiates how
we develop statistics-level text analytics algorithms vis-a-vis similar low-level
processing for computer vision is that we must take into account how different
terms (typically nouns and noun phrases) occur across entire sets (corpora)
of documents.

Thus, a major distinction between low-level text analytics algorithms and
low-level computer vision (and also brain-based vision) is that text analytics
looks at entire corpora early in the game, whereas vision processing can focus
on just one image at a time.

That said, at the lowest levels, we do preprocessing, feature (term) ex-
traction, and statistics.

At the highest level, we create a world-view that expresses our under-
standing of what physical and abstract things comprise our universe, and
identify the relations between them.

Our ultimate goal is to match texts with a set of known objects in our
world-view, identifying those objects and relationships that are expressed in
each text, as well as grouping together texts that have similar objects and
relationships.

Thus, for both computer (and biological) vision, as well as for text ana-
lytics, our highest representation levels are very abstract.
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In between the low-level statistical processing and our high-level object
representations, we need transitional mechanisms. These are so important
that we devote the entire next chapter to describing text analytics represen-
tation levels and transitions in greater detail.

This subject also comprises the majority of the chapters in this book.
With that said, we briefly turn out attention to two other aspects of

brain architecture that are useful two us: topographic maps and statistical
thermodynamics.

2.4 Topographic Maps

One of the biggest clues that a brain architecture principle might be impor-
tant is when that architecture has components that go to great and extraor-
dinary lengths to make the principle work in practice.

A primary example of this is how the brain uses topographic
maps to represent data.

2.4.1 Strange Things That Happen in the Brain

As a quick aside, the notion of topographic mapping is a brain-architecture
principle that we will use on our data after it has gone through several pro-
cessing levels. The primary way in which we’ll use this principle is to create
order from large text corpora.

We can use one of two different algorithm types here; one clusters related
text items, and the other distributes these items over some pre-defined “to-
pographic space” (which is usually 2-D) so that similar items are next to
similar ones. Both of these algorithm classes are useful. They have slightly
different purposes, and it will be up to us to decide which we would prefer
to implement.

With this in mind, we turn to the brain, and notice that it does topo-
graphic mapping of certain input data.

The brain creates topographic maps of visual data. That is, something
that is perceived by one small area of the retina activates brain cells that are
neighboring to those that are activated by a neighboring retinal region.

This may be so obvious that it seems almost odd to make a point of this
organizational principle, but bear with me for a moment.
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The brain’s tactile representation system similarly is represented with
topographic mapping. Neurons from one finger activate brain cells that are
near to neurons on the next finger, and so on. Again, this is entirely what
we would expect.

What is perhaps a bit more subtle and interesting is that this tactile rep-
resentation has the same kind of organization as that used for vision; neurons
carrying stimulus from the “front and center” of our bodies (mapping roughly
to the center of our visual field) are central in the topographic representa-
tion and get a much higher mapping precision (just as with vision). Those
neurons that represent our tactile sides and back get a much lower degree of
precision, just as peripheral vision gets less neural processing (and precision)
than the processing given to foveal-centric stimulus.

Turning our attention to auditory stimulus, we find (once again) that the
brain’s representation of auditory stimulus forms a topographic map.

What is particularly interesting here is that when the brain creates to-
pographic maps for visual and tactile processes, the architecture seems very
logical and straightforward. In contrast, the brain architecture in mapping
auditory stimulus to a comparable 2-D space is extraordinarily complex.

The auditory neurons process sound frequency information, and to create
a 2-D spatial representation map, the timing (and also the frequency differen-
tials) between the signals arriving in the two auditory-input processing areas
(the cochlea) must be interpreted in a very specific way.

Creating a spatial representation of auditory stimulus is complex. Yet
the brain invests in this effort. Clearly, there is survival value.

One value - an obvious one - is being able to spatially-locate the source
of sound production. This alone would be a strong argument in favor of
developing an auditory 2-D topographic map.

However, there is another reason for this architecture; one that has only
been recognized for the past two decades – and which is gaining more and
more attention from biologists.

2.4.2 Sensor Fusion - An Essential Survival Skill

“What I tell you three times is true.”
The Hunting of the Snark, by Lewis Carroll
“Two out of three ain’t bad.”
Bat Out of Hell, performed by American musician Meat Loaf, lyrics writ-

ten by Jim Steinman.
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Sensor fusion is a survival skill. Sensor fusion is what lets us correlate
information coming in from multiple sources (visual, tactile, auditory) about
the same thing. This is a powerful clue that helps us put the information
together to create a meaningful mental construct.

Sensor fusion does more than just help us correlate information, though.
Sensor fusion helps us cut through the chaff of too much stimulus, and

isolate and extract stimuli that may actually be important.
Think about this for a moment. Most of the brain’s neurons are in-

hibitory; they are calm-down neurons. Substantially fewer are excitatory;
the pay-attention-to-me types of neurons.

We – and all living creatures – are constantly bombarded with stimulus.
The important task is not to react to incoming stimulus, it is to determine
that which is worth reaction.

Consider how this works for a cat who is out on her morning hunt.
When a cat is hunting, she may ignore a little flicker of movement in the

grasses. She may ignore a little rustling sound. However, when the flicker of
movement happens at about the same time and in about the same location
from when and where the sound is detected, she is immediately alerted.

Her cognitive mind is not involved in this decision, at least not at first.
She doesn’t have to be thinking, “Im hungry, is there a mouse nearby?”

Instead, the sensor fusion area called the superior colliculus triggers her
response automatically. Her head turns and her eyes foveate; they center on
the source of the movement. Her ears pivot towards the sound source. The
combined inputs from two sensor modalities (visual and auditory), in about
the same timeframe and coming from approximately the same location, are
enough to fully grab and direct her attention.

Only after she has immediately responded to the combined sight and
sound, and assessed what that combination might be, can she then decide
whether or not to pursue the potential target.

This is an important survival skill, since the natural world is full of both
sights and sounds, and there are a huge number of largely-random triggers.
If the cat or any organism (including ourselves) responded equally intensely
to all stimuli, we would all forever be distracted. Instead, we are able to pref-
erentially respond only when stimuli combinations override our innate “calm-
down-and-ignore” mechanisms. (Neurologically, we have far more inhibitory
connections that cause our brains to calm down than we have excitatory
connections, which get our attention focused on a new stimulus.)

There are many biological factors that make sensor fusion possible, and
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recent research has shown that sensor fusion is even more widespread far
more commonly down throughout the brain than was thought to be the case
some decades ago.

One architectural component that makes sensor fusion work, though, is
the notion of topographic maps.

Topographic maps are a key aspect of low-level visual processing. This
makes enormously good sense from an architectural point of view; it lets
us literally “connect-the-dots.” Simply put, things that are near each other
in what would be a 2-D image of our visual observation space will trigger
neighboring cones and rods in the retina, and these then trigger neighboring
neurons in the input layer of the visual cortex. This forms a topographic
map representing the input stimulus.

This topographic map projects upward through the visual cortex layers, so
that very simple connections at the lowest levels (similarities or dissimilarities
of brightness and texture) will generate larger-scale features at the upper
visual processing levels. All throughout the processing levels, though, the
notion of a topographic map persists.

This is easy enough to understand in terms of the visual cortex. What is
very interesting, and also remarkably compelling, is that our auditory system
and our tactile sensation system each also project to analogous topographic
maps. In fact, the auditory and tactile systems project to maps that have
the same configuration, more-or-less, as does the visual system.

This is a tour de force of neurological architecture.
While we can envision that tactile sensations, from all over our 3-D bodies,

might easily be projected to a 2-D map that is aligned with the visual map, it
takes far more neurological complexity to project auditory sensations to the
same topographic configuration. This is because auditory processes begin
with frequencies of sounds heard, and the projection requires a delicate and
precise combination of frequency and time differentials in order to project
the source into a 2-D map that can represents the space around the body.

The immense amount of neural complexity involved in creating this pro-
jection ability attests to the great value in having the inputs from three very
different sensory systems visual, tactile, and auditory mapped into the same
processing arena, with close overlaps of the stimulus source.

Earlier, biologically-based sensor fusion inspired various algorithms that
helped computational sensor fusion. The earliest applications were to various
military interests. Now, we can readily envision their relevance to various
commercial applications, such as automata-driven cars and other vehicles.
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Combining, for example, visual and IR sensors can help guide such vehi-
cles under various conditions of weather and illumination. It is because the
biological system finds such great value in topographic maps that we are
encouraged to see how this kind of data representation can help us with text
analytics. There is a class of algorithms that has already been widely used in
creating topographic maps; we will consider how they can form robust and
valuable tools for interpreting texts in several different ways.

2.5 Statistical Thermodynamics in Text An-

alytics and in the Brain

In addition to drawing inspiration from brain research, we will also call upon
one other area; statistical thermodynamics. This is the branch of physics
that deals with how very large collections of very simple objects behave.

Up until the past decade, this connection might have seem far-fetched.
Now, however, the collections that we consider are so vast that it is not
that unreasonable to step very far back and treat them as collections of very
simple objects.

In statistical thermodynamics, we typically model collections of objects
that can be in one of two states; think of this as “on” and “off,” or “black”
and “white,” or simply as states “A” and “B.” The point is that only two
states are allowed for each particle or unit in this statistical thermodynamics
world.

Sometimes, we apply some sort of external force to the system, and some-
thing happens. For example, in the statistical mechanics (related to thermo-
dynamics, not quite the same) of magnetic materials, we can have substances
that behave a certain way only when an external magnetic force is applied.

Specifically, we can have a substance that under normal conditions con-
tains an equal mixture of units having spins of either “up” or “down.” When
the external magnetic field is applied, though, the overwhelming majority of
these units line up with the field, creating a system whose units are hugely
in just one of the two allowable states.

By corollary, we can imagine that a query acts as a sort of “external
magnetic field.” It isn’t, of course, but we can envision it having some sort
of effect on the units in a text data corpora.

Prior to the query, there is no real differentiation between units. Once the
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query is applied, though, the units are either in state “A” (having relevance
to the query) or in state “B” (not being relevant).

Now, there is something very interesting about statistical thermodynam-
ics systems. We can model them with equations, of course; that is the entire
purpose of having these models — we get certain kinds of predictable and
describable behaviors.

More than that, though, depending on just a couple of parameters (one of
them being the strength of the applied field or stimulus), we can control how
the system responds. We can choose parameters so that the system goes into
an “all-or-nothing” response; when the external force (or query) is applied,
they are either almost all go into state “A” or almost all go into state “B.”
There are also a lot of behaviors in between.

This means that we can get a range of behaviors from the corpus as a
whole in response to queries, if we set it up right — analogous to a statistical
thermodynamics system of magnetizable particles.

The more we can create and work with this analogy, the more we can
generate certain predictable and even controllable behaviors from our data
corpus.

This, by itself, has potential value.
There are two more reasons, though, to think about using statistical

thermodynamics applications to modeling text corpora. The first of these
reasons deals with dynamic properties, especially phase transitions.

Phase transitions are what happens when a system changes state. When
liquid water turns to ice, that is a phase transition. When a previously unor-
ganized set of magnetizable units suddenly take on the same spin directions
(and becomes magnetized, or having its own magnetic field), that is also a
phase transition.

There are all sorts of interesting and subtle things about phase transitions
that can be of value to us, especially when we think of them as being the
outcome of a dynamic process.

This is an interesting – and largely new – thought for us. Most of the
time, we have been thinking about static data corpora, or data corpora that
are updated from time to time with new batches of data.

However, with better text analytics processes becoming available, we are
more and more interested in detecting change. We are interested in nov-
elty detection (new things), sentiment change (human responses to certain
things), and even changes in volumes of text on one subject or another.

Methods that can give us a handle on the dynamics of large-scale systems
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– potentially even large text corpora – are thus of great value, because they
can help us to model change.

The final reason that we have an emerging interest in statistical thermo-
dynamics of data corpora actually relates to both brain behaviors and the
behaviors of large, complex systems.

This discussion is brief – the goal here is simply to justify introducing
a realm of physics to text analytics and mining – but bears just a little
elaboration.

In the brain, there are occasions in which a few neurons start firing, and
they induce other neurons to fire as well. This in itself is not at all unusual;
neurons in the brain do this all the time. What is unusual, in this case, is that
the neurons which are induced to fire are very far away from the initial firing
neurons. Not only does this specialized set of far-from-each-other neurons
fire together, they keep it up. They have coherent firing patterns.

Similarly, physicists identify something that they call “long-range corre-
lations” in substances just before they undergo a phase change. That means
that certain of these simple units start acting coherently, before the big drama
of a phase transition takes place.

We can think of these behaviors as “early warning indicators.” Moreover,
these behaviors (as they show up in physical and biological systems) are
exactly the kinds of behavior that we may seek to discover in data corpora.
This will especially be the case if we are looking for advance detection of
emerging new events.

For this reason, one of the last chapters in this book provides (for the
adventurous and intrepid reader) a brief overview of statistical thermody-
namics as it can potentially relate to analyzing text data corpora. It is just
enough to establish some vocabulary and ideas, and to provide a jumping-off
point for those who will later follow up on this line of thinking.
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